skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oh, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A Chor–Goldreich (CG) source is a sequence of random variables X = X1 ∘ … ∘ Xt, where each Xi ∼ {0,1}d and Xi has δ d min-entropy conditioned on any fixing of X1 ∘ … ∘ Xi−1. The parameter 0<δ≤ 1 is the entropy rate of the source. We typically think of d as constant and t as growing. We extend this notion in several ways, defining almost CG sources. Most notably, we allow each Xi to only have conditional Shannon entropy δ d. We achieve pseudorandomness results for almost CG sources which were not known to hold even for standard CG sources, and even for the weaker model of Santha–Vazirani sources: We construct a deterministic condenser that on input X, outputs a distribution which is close to having constant entropy gap, namely a distribution Z ∼ {0,1}m for m ≈ δ dt with min-entropy m−O(1). Therefore, we can simulate any randomized algorithm with small failure probability using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our construction works in an online manner, since it is based on random walks on expanders. Our main technical contribution is a novel analysis of random walks, which should be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to X1∘ … ∘ Xt, accumulate most of the entropy in X. 
    more » « less
  2. Existing proofs that deduce BPP = P from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown . Specifically, assuming exponential lower bounds against randomized NP ∩ coNP circuits, formally known as randomized SVN circuits, we convert any randomized algorithm over inputs of length n running in time t ≥ n into a deterministic one running in time t 2+α for an arbitrarily small constant α > 0. Such a slowdown is nearly optimal for t close to n , since under standard complexity-theoretic assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower bounds against deterministic SVN circuits. Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s with seed length (1+α)log s , under the assumption that there exists a function f ∈ E that requires randomized SVN circuits of size at least 2 (1-α′) n , where α = O (α)′. The construction uses, among other ideas, a new connection between pseudoentropy generators and locally list recoverable codes. 
    more » « less
  3. null (Ed.)